CBSE Class 12 Math 2012 Solved Paper

© examsnet.com
Question : 26
Total: 29
Prove that
π
4
0
tanx
+ cotx dx = 2,
π
2

OR
Evaluate
3
1
2x2
+ 5x dx as a limit of sum.
Solution:  
π
4
0
tanx
+ cotx dx
=
π
4
0
(
sinx
cosx
+
cosx
sinx
)
dx
=
π
4
0
(
sinx+cosx
sinxcosx
)
dx
= 2
π
4
0
(
sinx+cosx
2sinxcosx
)
dx
2
π
4
0
(
sinx+cosx
1sinxcosx2
)
dx
Put sin x - cos x = t ⇒ (cos x + sin x) dx = dt
If x = 0 , t = 0 - 1 = - 1
and if x =
π
4
, t =
1
2
1
2
= 0
π
4
0
tanx+cotx dx = 2
0
1
dt
1t2

= 2|sin1t|10
= 2|sin10sin1(1)|
= 2|0+
π
2
|

= 2×
π
2

OR
3
1
2x2
+ 5x dx
Here, a = 1 , b = 3 , f (x) = 2x2 + 5x
∴ nh = b - a = 3 - 1 = 2
Now
b
a
f (x) dx =
lim
h0
f (a) + f (a + h) + f (a + 2h) + ... + f (a + (n - 1)h)
3
1
2x2
+ 5x dx
=
lim
h0
h |2 (1)2 +5 (1) + 2 (1+h)2 + 5 (1 + h) + [2(1+2h)2 + 5 (1 + 2h)] ... + [2 (1+(n1)h)2 + 5 (1 + (n - 1) h)]|
=
lim
h0
|7 + (2h2 + 9h + 7) + (8h2 + 18h + 7) + ... + (2 (n1)2h2 + 9 (n - 1) h + 7)|
=
lim
h0
|7n + 2h2 (12+2+...+(n1)2) + 9h (1 + 2 + ... + (n - 1))|
= li
m
h0
|7n+2h2
n(n1)(2n1)
6
+9h
n(n1)
2
|

=
lim
h0
|7nh+2
nh(nh2)(2nhh)
6
+9
nh(nhh)
2
|

=
lim
h0
|14+2
2(2h)(4h)
6
+9
2(2h)
2
|

= 14 +
16
3
+ 18 =
112
3
© examsnet.com
Go to Question: