© examsnet.com
Question : 29
Total: 29
Using the method of method of integration, find the area of the region bounded by the following lines:
3x – y – 3 = 0,
2x + y – 12 = 0,
x – 2y – 1 = 0
3x – y – 3 = 0,
2x + y – 12 = 0,
x – 2y – 1 = 0
Solution:
Given equations are:
3x – y – 3 = 0 ... (1)
2x + y – 12 = 0 ... (2)
x – 2y – 1 = 0 ... (3)
To Solve (1) and (2),
(1) + (2) ⇒ 5x = 15 ⇒ x = 3
(2) ⇒ y = 12 - 6 = 6
Thus (1) and (2) intersect at C (3, 6).
To solve (2) and (3),
(2) - 2 (3) ⇒ 5y = 10 ⇒ y = 2
(2) ⇒ 2x = 12 - 2 = 10 ⇒ x = 5
Thus (2) and (3) intersect at B (5, 2).
To solve (3) and (1),
2 (1) - (3) ⇒ 5x = 5 ⇒ x = 1
(3) ⇒ 1 - 2y = 1 ⇒ y = 0
Thus (3) and (1) intersect at A(1, 0).
Area =
(3x - 3) dx +
(12 - 2x) dx -
(x - 1) dx
= 3[
− x ] 1 3 + [ 12 x − x 2 ] 3 5 -
[
− x ] 1 5
= 3[ (
− 3 ) − (
− 1 ) ] + [(60 - 25) - (36 - 9)] -
[ (
− 5 ) − (
− 1 ) ]
= 3[
+
] + [35 - 27] -
[
+
]
= 6 + 8 - 4 = 10 sq. units
3x – y – 3 = 0 ... (1)
2x + y – 12 = 0 ... (2)
x – 2y – 1 = 0 ... (3)
To Solve (1) and (2),
(1) + (2) ⇒ 5x = 15 ⇒ x = 3
(2) ⇒ y = 12 - 6 = 6
Thus (1) and (2) intersect at C (3, 6).
To solve (2) and (3),
(2) - 2 (3) ⇒ 5y = 10 ⇒ y = 2
(2) ⇒ 2x = 12 - 2 = 10 ⇒ x = 5
Thus (2) and (3) intersect at B (5, 2).
To solve (3) and (1),
2 (1) - (3) ⇒ 5x = 5 ⇒ x = 1
(3) ⇒ 1 - 2y = 1 ⇒ y = 0
Thus (3) and (1) intersect at A(1, 0).
Area =
= 3
= 3
= 3
= 6 + 8 - 4 = 10 sq. units
© examsnet.com
Go to Question: