CBSE Class 12 Math 2012 Solved Paper

© examsnet.com
Question : 29
Total: 29
Using the method of method of integration, find the area of the region bounded by the following lines:
3x – y – 3 = 0,
2x + y – 12 = 0,
x – 2y – 1 = 0
Solution:  
Given equations are:
3x – y – 3 = 0 ... (1)
2x + y – 12 = 0 ... (2)
x – 2y – 1 = 0 ... (3)

To Solve (1) and (2),
(1) + (2) ⇒ 5x = 15 ⇒ x = 3
(2) ⇒ y = 12 - 6 = 6
Thus (1) and (2) intersect at C (3, 6).
To solve (2) and (3),
(2) - 2 (3) ⇒ 5y = 10 ⇒ y = 2
(2) ⇒ 2x = 12 - 2 = 10 ⇒ x = 5
Thus (2) and (3) intersect at B (5, 2).
To solve (3) and (1),
2 (1) - (3) ⇒ 5x = 5 ⇒ x = 1
(3) ⇒ 1 - 2y = 1 ⇒ y = 0
Thus (3) and (1) intersect at A(1, 0).
Area =
3
1
(3x - 3) dx +
5
3
(12 - 2x) dx -
5
1
1
2
(x - 1) dx
= 3 [
x2
2
x
]
13
+ [12xx2]35 -
1
2
[
x2
2
x
]
15

= 3 [(
9
2
3
)
(
1
2
1
)
]
+ [(60 - 25) - (36 - 9)] -
1
2
[(
25
2
5
)
(
1
2
1
)
]

= 3 [
3
2
+
1
2
]
+ [35 - 27] -
1
2
[
15
2
+
1
2
]

= 6 + 8 - 4 = 10 sq. units
© examsnet.com
Go to Question: