© examsnet.com
Question : 17
Total: 29
Evaluate: ∫
dx
OR
Evaluate: ∫
dx
OR
Evaluate: ∫
Solution:
∫
dx
Let (x + a) = t ⇒ dx = dt
∴ I = ∫
dt
= ∫
dt
= ∫ cos 2a - cot t sin 2a dt
= cos 2a t - sin 2a log |sin t| + C
= cos 2a x + a - sin 2a log |sin (x + a)| + C
OR
∫
dx
= 5 ∫
dx
=
∫
dx
=
∫
dx
=
∫
dx
=
∫
-
×
∫
dx
=
log |1 + 2x + 3 x 2 | -
∫
dx
=
log |1 + 2x + 3 x 2 | -
×
t a n − 1
+ C
=
log |1 + 2x + 3 x 2 | -
× t a n − 1 (
) + C
Let (x + a) = t ⇒ dx = dt
∴ I = ∫
= ∫
= ∫ cos 2a - cot t sin 2a dt
= cos 2a t - sin 2a log |sin t| + C
= cos 2a x + a - sin 2a log |sin (x + a)| + C
OR
∫
= 5 ∫
=
=
=
=
=
=
=
© examsnet.com
Go to Question: