CBSE Class 12 Math 2018 Solved Paper

© examsnet.com
Question : 25
Total: 29
If A = (
235
324
112
)
, find A1. Use it to solve the system of equations
2x - 3y + 5z = 11
3x + 2y - 4z = - 5
x + y - 2z = - 3
OR
Using elementary row transformations, find the inverse of the matrix
A = (
123
257
245
)

Solution:  
A = (
235
324
112
)

AA1 = I
(
235
324
112
)
A1 = (
100
010
001
)

R1R3
(
112
324
235
)
A1 = (
100
010
001
)

R2R23R1 . R3R32R1
(
112
012
059
)
A1 = (
001
013
102
)

R2 → - R2
(
112
012
059
)
A1 = (
001
013
102
)

R1R1R2 , R3R3+5R2
(
100
012
001
)
A1 = (
012
013
1513
)

R3 → - R3
(
100
012
001
)
A1 = (
012
013
1513
)

R2R2+2R3
(
100
010
001
)
A1 = (
012
2923
1513
)

A1 = (
012
2923
1513
)

Consider,
AX = B where B = [
11
5
3
]
and X = [
x
y
z
]

A1 AX = A1 B
⇒ X = A1 B
⇒ X = (
012
2923
1513
)
[
11
5
3
]

[
11
5
3
]
= [
1
2
3
]

⇒ x = 1 , y = 2 , z = 3
OR
Given A = (
123
257
245
)

Consider,
|
123
257
245
|
= 1 (- 25 + 28) - 2 (- 10 + 14) + 3 (- 8 + 10)
= 3 - 8 + 6
= 1 ≠ 0
A1 exist.
A A1 = I
(
123
257
245
)
A1 = (
100
010
001
)

R2R22R1,R3R3+2R1
(
123
011
001
)
A1 = (
100
210
201
)

R1R12R2
(
100
010
001
)
A1 = (
520
210
201
)

R1R1R3,R2R2R3
(
100
010
001
)
A1 = (
321
411
201
)

A1 = (
321
411
201
)

© examsnet.com
Go to Question: