© examsnet.com
Question : 25
Total: 29
If A = (
) , find A − 1 . Use it to solve the system of equations
2x - 3y + 5z = 11
3x + 2y - 4z = - 5
x + y - 2z = - 3
OR
Using elementary row transformations, find the inverse of the matrix
A =(
)
2x - 3y + 5z = 11
3x + 2y - 4z = - 5
x + y - 2z = - 3
OR
Using elementary row transformations, find the inverse of the matrix
A =
Solution:
A = (
)
A A − 1 = I
(
) A − 1 = (
)
R 1 ↔ R 3
(
) A − 1 = (
)
R 2 → R 2 − 3 R 1 . R 3 → R 3 − 2 R 1
(
) A − 1 = (
)
R 2 → - R 2
(
) A − 1 = (
)
R 1 → R 1 − R 2 , R 3 → R 3 + 5 R 2
(
) A − 1 = (
)
R 3 → - R 3
(
) A − 1 = (
)
R 2 → R 2 + 2 R 3
(
) A − 1 = (
)
A − 1 = (
)
Consider,
AX = B where B =[
] and X = [
]
⇒A − 1 AX = A − 1 B
⇒ X =A − 1 B
⇒ X =(
) [
]
⇒[
] = [
]
⇒ x = 1 , y = 2 , z = 3
OR
Given A =(
)
Consider,
|
| = 1 (- 25 + 28) - 2 (- 10 + 14) + 3 (- 8 + 10)
= 3 - 8 + 6
= 1 ≠ 0
A − 1 exist.
AA − 1 = I
(
) A − 1 = (
)
R 2 → R 2 − 2 R 1 , R 3 → R 3 + 2 R 1
(
) A − 1 = (
)
R 1 → R 1 − 2 R 2
(
) A − 1 = (
)
R 1 → R 1 − R 3 , R 2 → R 2 − R 3
(
) A − 1 = (
)
A − 1 = (
)
Consider,
AX = B where B =
⇒
⇒ X =
⇒ X =
⇒
⇒ x = 1 , y = 2 , z = 3
OR
Given A =
Consider,
= 3 - 8 + 6
= 1 ≠ 0
A
© examsnet.com
Go to Question: