CBSE Class 12 Math 2020 Delhi Set 1 Solved Paper

© examsnet.com
Question : 34
Total: 36
Using integration find the area of the region bounded between the two circles x2+y2=9 and (x3)2+y2=9.
OR
Evaluate the following integral as the limit of sums
4
1
(x2x)dx
.

OR

Let I=
4
1
(x2x)dx

We know
b
a
f(x)dx
=
lim
n
h
[f(a)+f(a+h)+f(a+2h)+...+f(a+(n1)h)]
,
As n,h0nh=ba=41=3
b
a
f(x)dx
=
lim
n
h
n1
r=0
f(a+rh)(i)

Here f(x)=x2x,a=1,b=4 .
f(a+rh)=(a+rh)2(a+rh)
f(1+rh)=(1+rh)2(1+rh)

By using (i),
4
1
(x2x)dx
=
lim
n
h
n1
r=0
[r2h2+rh]

I=
lim
n
h
{h2
n1
r=0
r2
+h
n1
r=0
r
}

I=
lim
n
h
{h2×
n(n1)(2n1)
6
+h
n(n1)
2
}

I=
lim
n
{
nh(nhh)(2nhh)
6
+
nh(nhh)
2
}

I=
3(30)(60)
6
+
3(30)
2

I=9+
9
2
=
27
2
.
© examsnet.com
Go to Question: