© examsnet.com
Question : 23
Total: 29
Evaluate
( 3 x 2 + 2 x ) dx as limit of sums.
OR
{ ( x , y ) :
+
≤ 1 ≤
+
}
OR
Solution:
I =
( 3 x 2 + 2 x ) dx
Here a = 1 , b = 3
f (x) =3 x 2 + 2x
h =
=
Since,
f (x) dx =
h [f (a) + f (a + h) + ... + f (a + (n - 1) h)]
So,
( 3 x 2 + 2 x ) =
h [3 ( 1 ) 2 + 2 (1)) + (3 ( 1 + h ) 2 + 2 (1 + h) + 3 ( 1 + 2 h ) 2 + 2 (1 + 2h)) ... + 3 ( 1 + ( n − 1 ) h ) 2 + 2 (1 + (n - 1) h)]
=
h [3 (n) + 3 ( h 2 + 4 h 2 + . . ( n − 1 ) 2 h 2 ) + 3 (2h + 4h + ... + 2 (n - 1) h) + 2n + 2 (h + 2h + ... + (n - 1) h)]
=
[5nh + 3 h 3 ( 1 2 + 2 2 + . . . + ( n − 1 ) 2 ) + 6 h 2 (1 + 2 + ... + (n - 1)) + 2 h 2 (1 + 2 + (n - 1))]
=
[ 5 n h + 3 h 2 ×
+
]
=
[ 10 +
+ 4 ( n h ) ( n h − h ) ]
=[ 10 +
+ 4 × 2 × 2 ]
= 10 + 8 + 16 = 34
OR
⇒
+
= 1
⇒ y =
√ 9 − x 2
Given line
+
= 1
⇒ y =( 2 −
)
Required Area{ ( x , y ) :
+
≤ 1 ≤
+
} is given below
Required Area =
( y 1 − y 2 ) dx
=
[
√ 9 − x 2 − ( 2 −
) ] dx
=[
(
√ 9 − x 2 +
s i n − 1
) − 2 x +
] 0 3
=[
(
s i n − 1 1 ) − 6 + 3 ] - 0
= 3 ×
- 3 =
(π - 2) sq units
Here a = 1 , b = 3
f (x) =
h =
Since,
So,
=
=
=
=
=
= 10 + 8 + 16 = 34
OR
⇒
⇒ y =
Given line
⇒ y =
Required Area
Required Area =
=
=
=
= 3 ×
© examsnet.com
Go to Question: