CBSE Class 12 Maths 2010 Solved Paper

© examsnet.com
Question : 26
Total: 29
Using properties of determinants show the following:
|
(b+c)2abca
ab(a+c)2bc
acbc(a+b)2
|
= 2 abc (a+b+c)3
Solution:  
Consider,
Δ =
|
(b+c)2abca
ab(a+c)2bc
acbc(a+b)2
|
= 2 abc (a+b+c)3
By performing R1aR1,R2bR2,R3cR3 and dividing the determinant by abc, we get
Δ =
1
abc
|
a(b+c)2a2ba2c
ab2b(a+c)2b2c
ac2bc2c(a+b)2
|

Now, taking a, b, c common from C1,C2 and C3
Δ =
abc
abc
|
(b+c)2a2a2
b2(a+c)2b2
c2c2(a+b)2
|

⇒ Δ =
|
(b+c)2a2a2
b2(c+a)2b2
c2c2(a+b)
|

Applying C1C1C2,C2C2C3
Δ = (a+b+c)2
|
b+ca0a2
bcac+abb2
0cab(a+b)2
|

Applying R3R3(R1+R2)
Δ = (a+b+c)2
|
b+ca0a2
bcac+abb2
2a2b2a2ab
|

Applying C1C1+C2
Δ = (a+b+c)2
|
b+ca0a2
0c+abb2
2b2a2ab
|

Applying C3C3+bC2
Δ = (a+b+c)2
|
b+ca0a2
0c+abbc+ab
2b2a0
|

Applying C1aC1 and C2bC2
Δ =
(a+b+c)2
ab
|
ab+aca20a2
0bc+abb2bc+ab
2ab2ab0
|

Applying C1C1C2
Δ =
(a+b+c)2
ab
|
ab+aca20a2
bcab+b2bc+abb2bc+ab
02ab0
|

Expanding along R3
=
(a+b+c)2
ab
(2ab(ab2c+a2b2+abc2+a2bca2bca3b+a2bc+a3ba2b2))

= 2 (a+b+c)2 (ab2c+abc2+a2bc)
= 2 (a+b+c)3 abc = R.H.S.
© examsnet.com
Go to Question: