NCERT Class XI Mathematics - Limits and Derivatives - Solutions

© examsnet.com
Question : 36
Total: 72
Find the derivative of the following functions from first principle.
(i) x3 – 27
(ii) (x – 1)(x – 2)
(iii)
1
x2

(iv)
x+1
x1
Solution:  
(i) Let f (x) = x3 – 27
We have,
d
dx
(f (x)) =
lim
h0
f(x+h)f(x)
h

=
lim
h0
[(x+h)327][x327]
h

=
lim
h0
[
x3+3x2h+3xh2+h327x3+27
h
]
=
lim
h0
3x2h+3xh2+h3
h

=
lim
h0
[
3x2+3xh+h2
h
]

=
lim
h0
(3x2+3xh+h2)

= 3x2 + 3x (0) + (0)2 = 3x2.
(ii) Let f(x) = (x – 1) (x – 2)
We have,
d
dx
(f (x)) =
lim
h0
f(x+h)f(x)
h

=
lim
h0
(x+h1)(x+h2)(x1)(x2)
h

=
lim
h0
[(x+h)22(x+h)(x+h)+2][x22xx+2]
h

=
lim
h0
[x2+h2+2xh3(x+h)+2][x23x+2]
h

=
lim
h0
h2+2xh3h
h

=
lim
h0
(h + 2x - 3) = 2x - 3
(iii) Let f (x) =
1
x2

We have,
d
dx
(f (x)) =
lim
h0
f(x+h)f(x)
h

=
lim
h0
[
1
(x+h)2
1
x2
h
]
=
lim
h0
[
x2(x+h)2
(x+h)2x2h
]
=
lim
h0
[
x2x2h22xh
(x+h)2.x2.h
]

=
lim
h0
[
h22xh
(x+h)2.x2.h
]
=
lim
h0
(
h
h
)
[
h+2x
(x+h)2.x2
]

= -
lim
h0
(
h+2x
(x+h)2.x2
)
=
2x
x2.x2
=
2
x3

(iv) Let f (x) =
x+1
x1

We have,
d
dx
(f (x)) =
lim
h0
f(x+h)f(x)
h

d
dx
(f (x)) =
lim
h0
[
(x+h+1)
(x+h1)
(x+1)
(x1)
h
]

=
lim
h0
[
(x+h+1)(x1)(x+1)(x+h1)
h(x+h1)(x1)
]

=
lim
h0
[
x2+hx+xxh1[x2+hxx+x+h1]
h(x+h1)(x1)
]

=
lim
h0
[
(x2+hxh1)(x2+hx+h1)
h(x+h1)(x1)
]

=
lim
h0
[
x2+hxh1x2hxh1
h(x+h1)(x1)
]

=
lim
h0
[
2h
h(x+h1)(x1)
]

=
lim
h0
[
2
(x+h1)(x1)
]

=
2
(x+01)(x1)

=
2
(x1)2
© examsnet.com
Go to Question: