NCERT Class XI Mathematics - Limits and Derivatives - Solutions

© examsnet.com
Question : 58
Total: 72
cosec x cot x
Solution:  
Let f(x) = cosec x cot x
⇒ f (x) =
1
sinx
.
cosx
sinx
⇒ f (x) =
cosx
sin2x

⇒ f (x) = cosx(sinx)2 ... (i)
Differentiating (i) with respect to x, we get
d
dx
[f (x)] = (- sin x) (sinx)2 + (- 2) (sinx)3 . cos x cos x
= – (sinx)1 – 2 (sinx)3·cos2x = - (sinx)1
2cos2x
sin3x

= - (sinx)1 - 2cot2x cosec x
= - cosex c - 2 cot2 x cosec x
= – cosec x [1 + 2 cot2 x]
= – cosec x [1 + cot2x+cot2x]
d
dx
(cosec x cot x) = - cosec x [cosec2x+cot2x] = - cosec3xcosecx.cot2x
© examsnet.com
Go to Question: