NCERT Class XI Mathematics - Limits and Derivatives - Solutions
© examsnet.com
Question : 58
Total: 72
cosec x cot x
Solution:
Let f(x) = cosec x cot x
⇒ f (x) =
.
⇒ f (x) =
⇒ f (x) =c o s x ( s i n x ) − 2 ... (i)
Differentiating (i) with respect to x, we get
[f (x)] = (- sin x) ( s i n x ) − 2 + (- 2) ( s i n x ) − 3 . cos x cos x
= –( s i n x ) – 1 – 2 ( s i n x ) – 3 ·cos2x = - ( s i n x ) − 1 −
= -( s i n x ) − 1 - 2 c o t 2 x cosec x
= - cosex c - 2c o t 2 x cosec x
= – cosec x [1 + 2c o t 2 x]
= – cosec x [1 +c o t 2 x + c o t 2 x ]
∴
(cosec x cot x) = - cosec x [ c o s e c 2 x + c o t 2 x ] = - c o s e c 3 x − c o s e c x . c o t 2 x
⇒ f (x) =
⇒ f (x) =
Differentiating (i) with respect to x, we get
= –
= -
= - cosex c - 2
= – cosec x [1 + 2
= – cosec x [1 +
∴
© examsnet.com
Go to Question: