NCERT Class XI Mathematics - Sequences and Series - Solutions

© examsnet.com
Question : 25
Total: 106
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that
a
p
(q - r) +
b
q
(r - p) +
c
r
(p - q) = 0
Solution:  
Let the first term be A & common difference be D. We have
Sp =
p
2
[2A + (p - 1) D] = a ⇒ A + (p - 1)
D
2
=
a
p
, Sq =
q
2
[2A + (q - 1) D] = b
⇒ A + (q - 1)
D
2
=
b
q
, Sr =
r
2
[2A + (r - 1) D] = c ⇒ A + (r - 1)
D
2
=
c
r

Now,
a
p
(qr)
+
b/q$$ (r - p) +
c
r
(p - q)
= (A+(p1)
D
2
)
(qr)
+ (A+(q1)
D
2
)
(rp)
+ (A+r1)
D
2
)
(pq)

= A [(q - r) + (r - p) + (p - q)] +
D
2
[(p - 1) (q - r) + (q - 1) (r - p) + (r - 1) (p - q)]
= A (q – r + r – p + p – q) +
D
2
[pq - rp - q + r + qr - pq - r + p + rp - qr - p + q]
= A (0) +
D
2
(0) = 0 + 0 = 0
Hence
q
p
(q - r) +
b
q
(r - p) +
c
r
(p - q) = 0
© examsnet.com
Go to Question: