NCERT Class XI Mathematics - Straight Lines - Solutions
© examsnet.com
Question : 55
Total: 74
Find the values of θ and p, if the equation x cosθ + y sinθ = p is the normal form of the line √ 3 x + y + 2 = 0.
Solution:
Given equation is √ 3 x + y + 2 = 0.
or,√ 3 x + y = - 2 or, - √ 3 x + (- 1) y = 2
⇒( −
) x + ( −
) y = 1
⇒ (– cos 30°)x + (– sin 30°)y = 1
⇒ x cos (180° + 30°) + y sin (180° + 30°) = 1
⇒ x cos 210° + y sin 210° = 1
Comparing the above equation with x cos θ + y sinθ = p, we get θ = 210°
and p = 1 i.e., θ = 210° =
=
.
or,
⇒
⇒ (– cos 30°)x + (– sin 30°)y = 1
⇒ x cos (180° + 30°) + y sin (180° + 30°) = 1
⇒ x cos 210° + y sin 210° = 1
Comparing the above equation with x cos θ + y sinθ = p, we get θ = 210°
and p = 1 i.e., θ = 210° =
© examsnet.com
Go to Question: