first resolve all the given terms into simpler form. i.e., 623=(2×3)23=223×323 759=(3×5×5)9=(3×52)9=39×518 1052=(3×5×7)2=32×52×72 now, 623×759×1052=223×323×39×518×32×52×72 =(223×5(18+2))×3(23+9+2)×72 =(223×520)×334×72 =1020×23×334×72 now 1020×23×334×72 is divided by 10n. then, largest value of n= power of 10=20