CBSE Class 12 Math 2008 Solved Paper

© examsnet.com
Question : 15
Total: 29
Differentiate the following with respect of x:
y = tan−1(
√1+x−√1−x
√1+x+√1−x
)
Solution:  
Let x = cos 2θ ⇒ θ =
1
2
c
o
s−1
x ... 1
∴ √1+x = √1+cos2θ = √1+2cos2θ−1 = √2 cos θ
√1−x = √1−cos2θ = √1−1−2sin2θ = √2 sin θ
Let y = tan−1|
√1+x−√1−x
√1+x+√1−x
|

= tan−1|
√2cosθ−√2sinθ
√2cosθ+√2sinθ
|

= tan−1|
1−tanθ
1+tanθ
|

= tan−1{tan(
Ï€
4
−θ
)
}

=
Ï€
4
- θ =
Ï€
4
-
1
2
c
o
s−1
x From 1
∴
dy
dx
= −
1
2
(−
1
√1−x2
)
=
1
2√1−x2
© examsnet.com
Go to Question: