CBSE Class 12 Math 2008 Solved Paper

© examsnet.com
Question : 17
Total: 29
Evaluate:
Ï€
∫
0
xsinx
1+cos2x
dx
Solution:  
I =
Ï€
∫
0
xisnx
1+cos2x
dx ... (i)
I =
Ï€
∫
0
π−xsinπ−x
1+cos2xπ−x
dx
I =
Ï€
∫
0
π−xsinx
1+cos2x
dx
I =
Ï€
∫
0
Ï€sinx
1+cos2x
dx -
Ï€
∫
0
xsinx
1+cos2x
dx ... (2)
Adding (1) and (2), we get:
2I =
−1
∫
1
π−dt
1+t2

2I = - π
−1
∫
1
(
1
1+t2
)
dt
2I = - π |tan−1t|1−1
2I = π [tan−11−tan−11 - 1]
2I = π (
Ï€
4
−(−
Ï€
4
)
)

2I =
Ï€2
2

∴ I =
Ï€2
4
© examsnet.com
Go to Question: