CBSE Class 12 Math 2008 Solved Paper

© examsnet.com
Question : 18
Total: 29
Solve the following differential equation:
(x2y2) dx + 2xy dy = 0
given that y = 1 when x = 1
OR
Solve the following differential equation:
dy
dx
=
2yx
2y+x
, if y = 1 when x = 1
Solution:  
(x2y2)dx + 2xydy = 0
dy
dx
=
y2x2
2xy
... (1)
It is a homogeneous differential equation.
Let y = vx ...(2)
dy
dx
= v + x
dv
dx
... (3)
Substituting (2) and (3) in (1), we get:
v + x
dv
dx
=
v2x2x2
2xvx

v + x
dv
dx
=
x2v21
2vx2
-
v21
2v

2v2+2vx
dv
dx
= v2 - 1
2vx
dv
dx
= - v2 - 1
(
2v
v2+1
)
dv = -
dx
x

Integrating both sides, we get:
2v
v2+1
dv = - ∫ (
1
x
)
dx
log |v2+1| = - log |x| + log C
log |v2+1| = log |
C
x
|

v2 + 1 =
C
x

xv2 + 1 = C
x |(
y
x
)
2
+1
|
= C
y2+x2 = Cx ... 4
It is given that when x = 1, y = 1
(1)2+(1)2 = C(1)
C = 2
Thus, the required solution is y2+x2 = 2x.
OR
We need to solve the following differential equation
dy
dx
=
x(2yx)
x(2y+x)

dy
dx
=
2yx
2y+x
... (1)
It is a homogeneous differential equation.
Let y = vx ...(2)
dy
dx
= v + x
dv
dx
... 3
Substituting (2) and (3) in (1), we get:
v + x
dv
dx
=
x(2v1)
x(2v+1)

x
dv
dx
=
v1
2v+1
- v
x
dv
dx
=
2v2+v1
2v+1

(
2v+1
2v2+v1
)
dv = (
1
x
)
dx
(
2v+1
2v2v+1
)
dv = (
1
x
)
dx
Integrating both sides,
1
2
(
4v1+3
2v2v+1
)
dv = ∫ (
1
x
)
dx
1
2
(
4v1
2v2v+1
)
dv + ∫
3
2
(
1
2v2v+1
)
dv = ∫ (
1
x
)
dx
1
2
(
4v1
2v2v+1
)
dv + ∫
3
4
|
1
v2
v
2
+
1
2
|
dv = f (
1
x
)
dx
1/2 log |2v2v+1| +
3
4
(
1
v2
v
2
+
1
16
+
7
16
)
dv = - log |x| + C
1/2 log |2v2v+1| +
3
4
dv
(v
1
4
)
2
+(
7
4
)
2
= - log |x| + C
1/2 log |2v2v+1| +
3
4
×
4
7
t
a
n1
(
v
1
4
7
4
)
= - log |x| + C
1/2 log |2v2v+1| +
3
7
t
a
n1
(
4v1
7
)
= C - log |x|
Put v =
y
x

1
2
log |2(
y
x
)
2
(
y
x
)
+1
|
+
3
7
t
a
n1
(
4y
x
1
7
)
= C - log |x|
1
2
log |
2y2xy+x2
x2
|
+
3
7
t
a
n1
(
4yx
7x
)
= C - log |x| ... 4
Now y = 1 when x = 1
1
2
log |
(2)(1)21(1)+12
12
|
+
3
7
t
a
n1
|
(4)(1)1
7(1)
|
= C - log |1|
1
2
log 2 +
3
7
t
a
n1
(
3
7
)
= C ... (5)
Therefore, form (4) and (5) we get:
1
2
log |
2y2xy+x2
x2
|
+
3
7
t
a
n1
(
4yx
7x
)
=
1
2
log 2 +
3
7
t
a
n1
(
3
7
)
- log |x|
1
2
log |
2y2xy+x2
x2
|
-
1
2
log 2 + log |x| =
3
7
[tan1
3
7
tan1(
4yx
7x
)
]

1
2
log |
2y2xy+x2
2x2
.x2
|
=
3
7
t
a
n1
(
3x4y+x
7x
1+
3(4yx)
7x
)

1
2
log |
2y2xy+x2
2
|
=
3
7
t
a
n1
(
4(xy)
7x
7x+12y3x
7x
)

1
2
log |
2y2xy+x2
2
|
=
3
7
t
a
n1
(
7(xy)
x+3y
)
© examsnet.com
Go to Question: