CBSE Class 12 Math 2011 Solved Paper

© examsnet.com
Question : 12
Total: 29
Prove the following :
cot1[
1+sinx+1sinx
1+sinx1sinx
]
=
x
2
, x ∊ (0,
π
2
)

OR
Find the value of tan1(
x
y
)
- tan1(
xy
x+y
)

Solution:  
cot1[
1+sinx+1sinx
1+sinx1sinx
]

=
cot1[
sin2(
x
2
)
+cos2(
x
2
)
+sin2(
x
2
)
+sin2(
x
2
)
+cos2(
x
2
)
sin2(
x
2
)
sin2(
x
2
)
+cos2(
x
2
)
+sin2(
x
2
)
sin2(
x
2
)
+cos2(
x
2
)
sin2(
x
2
)
]

[Since, sin2 A + cos2 A = 1]
=
cot1[
sin2(
x
2
)
+cos2(
x
2
)
+2sin(
x
2
)
c
o
s
(
x
2
)
+sin2(
x
2
)
+cos2(
x
2
)
2sin(
x
2
)
c
o
s
(
x
2
)
sin2(
x
2
)
+cos2(
x
2
)
+2sin(
x
2
)
c
o
s
(
x
2
)
sin2(
x
2
)
+cos2(
x
2
)
2sin(
x
2
)
c
o
s
(
x
2
)
]
[Since, sin2A = 2 sinA cosA]
=
cot1[
(cos
x
2
+sin
x
2
)
2
+(cos
x
2
sin
x
2
)
2
(cos
x
2
+sin
x
2
)
2
(cos
x
2
sin
x
2
)
2
]

= cot1(
2cos
x
2
2sin
x
2
)
= cot1(cot
x
2
)

=
x
2

Hence proved.
OR
tan1(
x
y
)
- tan1(
xy
x+y
)

tan1(
x
y
)
- tan1(
x
y
1
x
y
+1
)

= tan1(
x
y
)
- tan1(
x
y
1
1+
x
y
)

tan1(
x
y
)
- [tan1(
x
y
)
tan1(1)
]
[Since tan1 a - tan1 b = tan1(
ab
1+ab
)
]
tan1(
x
y
)
- tan1(
x
y
)
+ tan1(1)
= tan1(1) =
π
4

Thus tan1(
x
y
)
- tan1(
xy
x+y
)
=
π
4
© examsnet.com
Go to Question: