CBSE Class 12 Math 2012 Solved Paper

© examsnet.com
Question : 14
Total: 29
If (cosx)y = (cosy)x , find
dy
dx

OR
If sin y = x sin (a + y), prove that
dy
dx
=
sin2a+y
sina
Solution:  
The given function is (cosx)y = (cosy)x
Taking logarithm on both the sides, we obtain
ylog cosx = xlog cosy
Differentiating both sides, we obtain
log cosx ×
dy
dx
+ y ×
d
dx
(log cos x) = log cos y ×
d
dx
(x) + x ×
d
dx
(log cos y)
⇒ log cos x ×
dy
dx
+ y ×
1
cosx
×
d
dx
(cos x) = log cos y × 1 + x ×
1
cosy
×
d
dx
(cos y)
⇒ log cos x ×
dy
dx
+
y
cosx
(- sin x) = log cos y +
x
cosy
× (- sin y) ×
dy
dx

⇒ log cos x ×
dy
dx
- y tan x - log cos y - x tan y ×
dy
dx

⇒ log cos x ×
dy
dx
+ x tan y ×
dy
dx
= log cos y + y tan x
⇒ (log cos x + x tan y) ×
dy
dx
= log cos y + y tan x
dy
dx
=
logcosy+ytanx
logcosx+xtany

OR
We have,
siny = x sin (a + y)
⇒ x =
siny
sin(a+y)

Differentiating the above function we have,
1 =
sin(a+y)×cosy
dy
dx
siny×cos(a+y)
dy
dx
sin2(a+y)

sin2 (a + y) = [sin (a + y) × cos y - sin y cos (a + y)]
dy
dx

sin2(a+y)
[sin(a+y)×cosysinycos(a+y)]
=
dy
dx

sin2(a+y)
sin(a+yy)
=
dy
dx

sin2(a+y)
sina
=
dy
dx

dy
dx
=
sin2(a+y)
sina

© examsnet.com
Go to Question: