© examsnet.com
Question : 14
Total: 29
If ( c o s x ) y = ( c o s y ) x , find
OR
If sin y = x sin (a + y), prove that
=
OR
If sin y = x sin (a + y), prove that
Solution:
The given function is ( c o s x ) y = ( c o s y ) x
Taking logarithm on both the sides, we obtain
ylog cosx = xlog cosy
Differentiating both sides, we obtain
log cosx ×
+ y ×
(log cos x) = log cos y ×
(x) + x ×
(log cos y)
⇒ log cos x ×
+ y ×
×
(cos x) = log cos y × 1 + x ×
×
(cos y)
⇒ log cos x ×
+
(- sin x) = log cos y +
× (- sin y) ×
⇒ log cos x ×
- y tan x - log cos y - x tan y ×
⇒ log cos x ×
+ x tan y ×
= log cos y + y tan x
⇒ (log cos x + x tan y) ×
= log cos y + y tan x
∴
=
OR
We have,
siny = x sin (a + y)
⇒ x =
Differentiating the above function we have,
1 =
⇒s i n 2 (a + y) = [sin (a + y) × cos y - sin y cos (a + y)]
⇒
=
⇒
=
⇒
=
⇒
=
Taking logarithm on both the sides, we obtain
ylog cosx = xlog cosy
Differentiating both sides, we obtain
log cosx ×
⇒ log cos x ×
⇒ log cos x ×
⇒ log cos x ×
⇒ log cos x ×
⇒ (log cos x + x tan y) ×
∴
OR
We have,
siny = x sin (a + y)
⇒ x =
Differentiating the above function we have,
1 =
⇒
⇒
⇒
⇒
⇒
© examsnet.com
Go to Question: