CBSE Class 12 Math 2013 Solved Paper

© examsnet.com
Question : 11
Total: 29
Show that the function f in A = R - {
2
3
}
defined as f(x) =
4x+3
6x−4
is one-one and onto.
Hence find
−1
f
Solution:  
f(x) =
4x+3
6x−4

Let f (x1) = f (x2)
⇒
4x1+3
6x1−4
=
4x2+3
6x2−4

⇒ 24 x1x2 - 16 x1 + 18 x2 - 12 = 24 x1x2 + 18 x1 - 16 x2 - 12
⇒ 18 x2 + 16 x2 = 18 x1 + 16 x1
⇒ 34 x2 = 34 x1
Since,
4x1+3
6x1−4
is a real number, therefore, for every y in the co-domain of f, there exists a number x in R - {
2
3
}
such that f(x) = y =
4x1+3
6x1−4

Therefore, f(x) is onto.
Hence, f−1 exists.
Now, let y =
4x1+3
6x1−4

⇒ 6xy - 4y = 4x + 3
⇒ 6xy - 4xx = 4y + 3
⇒ x (6y - 4) = 4y+ 3
⇒ x =
4y+3
6y−4

⇒ y =
4x+3
6x−4
int exchanging the variables x and y
⇒ f−1 (x) =
4x+3
6x−4
[put y = f−1 x]
© examsnet.com
Go to Question: