© examsnet.com
Question : 5
Total: 29
Prove that :
3 s i n − 1 x = s i n − 1 (3x - 4 x 3 ) , x ∊ [ −
,
]
Solution:
Given 3 s i n − 1 x = s i n − 1 (3x - 4 x 3 ) , x ∊ [ −
,
]
Let x = sin θ ⇒ θ =s i n − 1 x ... (i)
⇒ LHS =s i n − 1 (3 sin θ - 4 s i n 3 θ)
=s i n − 1 (sin 3θ) (Since sin 3θ = 3 sin θ - 4 s i n 3 θ)
= 3θ (Sinces i n − 1 (sin x) = x)
RHS = 3s i n − 1 x
= 3s i n − 1 (sin θ) ... (ii)
3 s i n − 1 x = s i n − 1 ( 3 x − 4 x 3 ) From (i) and (ii)
Let x = sin θ ⇒ θ =
⇒ LHS =
=
= 3θ (Since
RHS = 3
= 3
© examsnet.com
Go to Question: