CBSE Class 12 Maths 2010 Solved Paper

© examsnet.com
Question : 18
Total: 29
Evaluate:
Ï€
∫
0
x
1+sinx
dx
Solution:  
Ï€
∫
0
x
1+sinx
dx
Using the property
a
∫
0
f (x) dx =
a
∫
0
f (a - x) dx
⇒ I =
Ï€
∫
0
π−x
1+sin(π−x)
dx
=
Ï€
∫
0
π−x
1+sinx
dx ... (2)
Now adding (1) and (2), we get
2I =
Ï€
∫
0
x
1+sinx
dx +
Ï€
∫
0
π−x
1+sinx
dx
=
Ï€
∫
0
Ï€
1+sinx
dx
= π
Ï€
∫
0
1
1+sinx
dx
= π
Ï€
∫
0
(1−sinx)
(1−sin2x)
dx
== π
Ï€
∫
0
(1−sinx)
(cos2x)
dx
= π [
Ï€
∫
0
(
1
cos2x
−
sinx
cos2x
)
d
x
]

= π [
Ï€
∫
0
sec2x
−secxtanxdx
]

= π [
Ï€
∫
0
sec2xdx
−
Ï€
∫
0
secxtanxdx
]

= π ([tanx]0π−[secx]0π)
⇒ 2I = π (2)
⇒ I = π
So,
Ï€
∫
0
x
1+sinx
dx = π
© examsnet.com
Go to Question: