CBSE Class 12 Maths 2010 Solved Paper

© examsnet.com
Question : 12
Total: 29
Prove the following :
tan1x =
1
2
c
o
s1
(
1x
1+x
)
, x ∊ (0 , 1)
OR
Prove the following :
cos1(
12
13
)
+ sin1(
3
5
)
= sin1(
56
65
)

Solution:  
Let t = tan1x
So x = tan t
i.e., tan2 t = x
On substituting x in the R.H.S. of equation tan1x =
1
2
c
o
s1
(
1x
1+x
)

we get
1
2
c
o
s1
(
1x
1+x
)
=
1
2
c
o
s1
(
1tan2t
1+tan2t
)

Now, using the formula 2θ = cos1(
1tan2t
1+tan2t
)
we have
1
2
c
o
s1
(
1x
1+x
)
=
1
2
c
o
s1
*cos (2t))
= t = tan1x = L.H.S.
Hence Proved.
OR
Let a be in I quadrant such that
cos1(
12
13
)
= a
So cos a =
12
13

⇒ sin a = 1(
12
13
)
2

= 1
144
169

=
169144
169

=
25
169
=
5
13

And tan a =
5
12

So, a = tan1(
5
12
)
... (1)
Again b ∊ I quadrant such that sin1(
1
3
)
= b
So, sin b =
3
5

⇒ cos b = 1(
3
5
)
2

= 1
9
25

=
16
25
=
4
5

And tan b =
3
4

So, b = tan1(
3
4
)
... (2)
Now, let sin1(
56
65
)
= c where c is in I quadrant
So, sin c =
56
65

⇒ cos c = 1(
56
65
)
2

= 1
3126
4225

=
42253126
4225
=
1089
4225
=
33
65

Ans, tan c =
56
33

So c = tan1(
56
33
)

sin1(
56
33
)
= tan1(
56
33
)
... (3)
Now, we need t prove cos1(
12
13
)
+ sin1(
3
5
)
= sin1(
56
65
)

Consider a + b
= cos1(
12
13
)
+sin1(
3
5
)

= tan1(
5
12
)
+tan1(
3
4
)

[cos1(
12
13
)
=tan1(
5
12
)
and sin1(
3
5
)
=tan1(
3
4
)
]
= tan1(
5
12
+
3
4
1(
5
12
×
3
4
)
)
[Using tan1x+tan1y = tan1(
x+y
1xy
)
]
= tan1(
20+36
4815
)

= tan1(
56
33
)

= c = sin1(
56
65
)
[Using,eq(3)]
Hence Proved.
© examsnet.com
Go to Question: