CBSE Class 12 Maths 2010 Solved Paper

© examsnet.com
Question : 18
Total: 29
Evaluate:
π
0
x
1+sinx
dx
Solution:  
π
0
x
1+sinx
dx
Using the property
a
0
f (x) dx =
a
0
f (a - x) dx
⇒ I =
π
0
πx
1+sin(πx)
dx
=
π
0
πx
1+sinx
dx ... (2)
Now adding (1) and (2), we get
2I =
π
0
x
1+sinx
dx +
π
0
πx
1+sinx
dx
=
π
0
π
1+sinx
dx
= π
π
0
1
1+sinx
dx
= π
π
0
(1sinx)
(1sin2x)
dx
== π
π
0
(1sinx)
(cos2x)
dx
= π [
π
0
(
1
cos2x
sinx
cos2x
)
d
x
]

= π [
π
0
sec2x
secxtanxdx
]

= π [
π
0
sec2xdx
π
0
secxtanxdx
]

= π ([tanx]0π[secx]0π)
⇒ 2I = π (2)
⇒ I = π
So,
π
0
x
1+sinx
dx = π
© examsnet.com
Go to Question: