CBSE Class 12 Maths 2010 Solved Paper

© examsnet.com
Question : 19
Total: 29
Evaluate: ∫ ex(
sin4x4
1cos4x
)
dx
OR
Evaluate: ∫
1x2
x(12x)
dx
Solution:  
Let I = ∫ ex(
sin4x4
1cos4x
)
dx
= ∫ ex(
2sin2xcos2x4
2sin2(2x)
)
dx [Using, sin2x 2sinx . cosx and 2 sin2 x = 1 - cos(2x)
= ∫ ex(
2(sin(2x)cos(2x)4
2sin2x
)
dx = ∫ ex(
sin(2x)cos(2x)
sin22x
2
sin22x
)
dx
= ∫ ex 9cot (2x) - 2 cosec2 2x) dx
Now, let f(x) = cot (2x) then f’(x) = -2 cosec2 2x
I = ∫ ex (f (x) + f' (x)) dx
So, I = ex f(x) + C = ex cot 2x + C , where C is a constant
Therefore, ex(
sin4x4
1cos4x
)
dx = ex cot (2x) + C
OR
1x2
x(12x)
dx
Here
1x2
x(12x)
is an improper rational fraction
Reducing it to proper rational fraction gives
1x2
x(12x)
=
1
2
+
1
2
(
2x
x(12x)
... (i)
Now, let
2x
x(12x)
=
A
x
+
B
(12x)

2x
x(12x)
=
A(12x)+Bx
x(12x)
⇒ 2 - x = A - x (2A - B)
Equating the coefficients we get ,A = 2 and B = 3
So,
2x
x(12x)
=
2
x
+
3
(12x)

Substituting in equation (1), we get
1x2
x(12x)
=
1
2
+
1
2
(
2
x
+
3
(12x)
)

i.e. ∫
1x2
x(12x)
dx = ∫ [
1
2
+
1
2
(
2
x
+
3
(12x)
)
]
dx
= ∫
dx
2
+ ∫
dx
2
+
3
2
dx
(12x)
=
x
2
+ log |x| +
3
2
×
1
(2)
log |1 - 2x| + C
=
x
2
+ log |x| -
3
4
log |1 - 2x| + C
© examsnet.com
Go to Question: