NCERT Class XI Mathematics - Binomial Theorem - Solutions
© examsnet.com
Question : 11
Total: 36
Find ( a + b ) 4 − ( a − b ) 4 . Hence, evaluate ( √ 3 + √ 2 ) 4 − ( √ 3 − √ 2 ) 4
Solution:
By binomial theorem, we have
( a + b ) 4 − ( a − b ) 4 = [
C 0 a 4 +
C 1 a 3 b +
C 2 a 2 b 2 +
C 3 a b 3 +
C 4 b 4 ] - [
C 0 a 4 −
C 1 a 3 b +
C 2 a 2 b 2 -
C 3 a b 3 +
C 4 b 4 ]
=a 4 + 4 a 3 b + 6 a 2 b 2 + 4 a b 3 + b 4 − a 4 + 4 a 3 b − 6 a 2 b 2 + 4 a b 3 − b 4
∴( a + b ) 4 − ( a − b ) 4 = 8 a 3 b + 8 a b 3 = 8 a b ( a 2 + b 2 ) ... (i)
Substituting a =√ 3 and b = √ 2 , in (i) we get
( √ 3 + √ 2 ) 4 − ( √ 3 − √ 2 ) 4 = 8 √ 3 √ 2 [ ( √ 3 ) 2 + ( √ 2 ) 2 ] = 8 √ 6 [ 3 + 2 ] = 40 √ 6
=
∴
Substituting a =
© examsnet.com
Go to Question: