NCERT Class XI Mathematics - Limits and Derivatives - Solutions

© examsnet.com
Question : 41
Total: 72
Find the derivative of
(i) 2x -
3
4

(ii) (5x3+3x1)(x1)
(iii) x3(5+3x)
(iv) x5(36x9)
(v) x4(34x5)
(vi)
2
x+1
x2
3x1
Solution:  
(i) Let f (x) = 2x −
3
4
... (i)
Differentiating (1) with respect to x, we get
f ′(x) = 2·1 – 0 ⇒ f ′(x) = 2.
(ii) Let f(x) = (5x3 + 3x – 1) (x – 1) ... (1)
Differentiating (1) with respect to x, we get
f ′(x)=(5x3 +3x−1)′ (x−1)+(5x3 +3x−1)(x−1)′
⇒ f ′(x) = (5·3x2 + 3 – 0) (x – 1) + (5x3 + 3x – 1) (1 – 0)
= (15x2 + 3) (x – 1) + (5x3 + 3x – 1) (1) = 15x3 + 3x – 15x2 – 3 + 5x3 + 3x – 1
∴ f ′(x) = 20x315x2 + 6x – 4.
(iii) Let f(x) = x3 (5 + 3x) ... (1)
Differentiating (1) with respect to x, we get
f ′(x) = (x3)′ (5 + 3x) + (x3) (5 + 3x)′
⇒ f ′(x) = (–3) x31 (5 + 3x) + (x3)(0 + 3)
= 3x4 (5 + 3x) + x3 ·(3) = 15x49x3+3x3
= - 15x46x3 =
15
x4
6
x3

∴ f' (x) =
3
x2
(5 + 2x).
(iv) Let f(x) = x5(36x9) ... (1)
Differentiating (1) with respect to x, we get
f ′(x) = (x5)(36x9) + x5(36x9)
= 5x4(36x9) + x5(0+6·9x10) = 15x430x5+54x5
∴ f' (x) = 15x4+24x5 = 15x4+
24
x5
.
(v) Let f(x) = x4(34x5) ... (1)
Differentiating (1) with respect to x, we get
f′(x) = (x4)(34x5) + x4(34x5)
⇒ f ′(x) = 4x5(34x5) + x4(0+20x6) = 12x5 + 16x10+20x10
= 12x5+36x10
∴ f' (x) =
12
x5
+
36
x10
.
(vi) Let f (x) =
2
x+1
x2
3x1
... (1)
Differentiating (1) with respect to x, we get
f' (x) = [
(x+1)(2)(2).(x+1)
(x+1)2
]
- [
(3x1)(x2)x2(3x1)
(3x1)2
]

=
2
(x+1)2
- [
(3x1)(2x)x2(3)
(3x1)2
]

2
(x+1)2
+[
6x22x3x2
(3x1)2
]

=
2
(x+1)2
[
3x22x
(3x1)2
]

∴ f' (x) =
2
(x+1)2
x(3x2)
(3x1)2
.
© examsnet.com
Go to Question: