NCERT Class XI Mathematics - Limits and Derivatives - Solutions
© examsnet.com
Question : 43
Total: 72
Find the derivative of the following functions :
(i) sin x cos x
(ii) sec x
(iii) 5 sec x + 4 cos x
(iv) cosec x
(v) 3 cot x + 5 cosec x
(vi) 5 sin x – 6 cos x + 7
(vii) 2 tan x – 7 sec x.
(i) sin x cos x
(ii) sec x
(iii) 5 sec x + 4 cos x
(iv) cosec x
(v) 3 cot x + 5 cosec x
(vi) 5 sin x – 6 cos x + 7
(vii) 2 tan x – 7 sec x.
Solution:
(i) Let f(x) = sin x cos x ... (1)
Differentiating (1) with respect to x, we get
f ′(x) = (sin x)′ cos x + (cos x)′ sin x = cosx · cosx + (– sin x) · sin x
=c o s 2 x – s i n 2 x
∴ f ′(x) = cos 2x.
(ii) Let f(x) = sec x
⇒ f (x) =
⇒ f (x) = ( c o s x ) − 1 ... (1)
Differentiating (1) with respect to x, we get f ′(x) = –( c o s x ) – 2 · (– sinx)
⇒ f' (x) =
⇒ f' (x) =
.
∴ f ′(x) = tanx · secx.
(iii) Let f (x) = 5 secx + 4 cosx
⇒ f (x) =
+ 4 c o s x ... (1)
Differentiating (1) with respect to x, we get
f ′(x) = 5(–1)( c o s x ) – 2 (– sin x) + 4 (– sin x)
=
- 4 sin x =
.
- 4 sin x
∴ f' (x) = 5 tan x . sec x - 4 sin x.
(iv) Let f(x) = cosec x
⇒ f (x) =
⇒ f (x) = ( s i n x ) − 1 ... (1)
Differentiating (1) with respect to x, we get
f ′(x) = (– 1)( s i n x ) – 2 · cos x =
=
.
∴ f ′(x) = – cot x cosec x
(v) Let f(x) = 3 cot x + 5 cosec x
⇒ f (x) =
+
... (1)
Differentiating (1) with respect to x, we get
f' (x) =3 [
] + 5 [
]
=3 [
] + 5 [
]
=3 [
] + 5 [
]
=− 3 [
] - 5 [
.
]
=− 3 [
] - 5 [cot x . cosec x]
= – 3c o s e c 2 x – 5 cot x · cosec x = – cosec x [3 cosec x + 5 cot x].
(vi) Let f(x) = 5 sin x – 6 cos x + 7 ... (1)
Differentiating (1) with respect to x, we get
f ′(x) = 5 cos x – 6 (– sin x) + 0
∴ f ′(x) = 5 cos x + 6 sin x.
(vii) Let f(x) = 2 tan x – 7 sec x ... (1)
Differentiating (1) with respect to x, we get
f ′(x) = 2s e c 2 x – 7 sec x tan x
Differentiating (1) with respect to x, we get
f ′(x) = (sin x)′ cos x + (cos x)′ sin x = cosx · cosx + (– sin x) · sin x
=
∴ f ′(x) = cos 2x.
(ii) Let f(x) = sec x
⇒ f (x) =
Differentiating (1) with respect to x, we get f ′(x) = –
⇒ f' (x) =
∴ f ′(x) = tanx · secx.
(iii) Let f (x) = 5 secx + 4 cosx
⇒ f (x) =
Differentiating (1) with respect to x, we get
f ′(x) = 5(–1)
=
∴ f' (x) = 5 tan x . sec x - 4 sin x.
(iv) Let f(x) = cosec x
⇒ f (x) =
Differentiating (1) with respect to x, we get
f ′(x) = (– 1)
∴ f ′(x) = – cot x cosec x
(v) Let f(x) = 3 cot x + 5 cosec x
⇒ f (x) =
Differentiating (1) with respect to x, we get
f' (x) =
=
=
=
=
= – 3
(vi) Let f(x) = 5 sin x – 6 cos x + 7 ... (1)
Differentiating (1) with respect to x, we get
f ′(x) = 5 cos x – 6 (– sin x) + 0
∴ f ′(x) = 5 cos x + 6 sin x.
(vii) Let f(x) = 2 tan x – 7 sec x ... (1)
Differentiating (1) with respect to x, we get
f ′(x) = 2
© examsnet.com
Go to Question: