NCERT Class XI Mathematics - Limits and Derivatives - Solutions

© examsnet.com
Question : 44
Total: 72
Find the derivative of the following functions from first principle:
(i) –x
(ii) (x)1
(iii) sin (x + 1)
(iv) cos (x
π
8
)
Solution:  
(i) Let f(x) = – x
We have
d
dx
(f (x)) =
lim
h0
f(x+h)f(x)
h

=
lim
h0
(x+h)(x)
h

=
lim
h0
xh+x
h

=
lim
h0
h
h

=
lim
h0
(1)
= - 1
(ii) Let f(x) = (x)1
⇒ f (x) =
1
x

We have,
d
dx
(f (x)) =
lim
h0
[
f(x+h)f(x)
h
]

=
lim
h0
[1/x+h(
1
x
)
]
h
=
lim
h0
[
1
x+h
+
1
x
]
h

=
lim
h0
[
x+x+h
x(x+h)h
]

=
lim
h0
[
h
hx(x+h)
]
=
1
x2

(iii) Let f(x) = sin (x + 1)
We have,
d
dx
(f (x)) =
lim
h0
[f(x+h)f(x)]
h

=
lim
h0
sin(x+h+x)sin(x+1)
h

=
lim
h0
2cos(
x+h+1+x+1
2
)
s
i
n
(
x+h+1x1
2
)
h

=
lim
h0
2[cos(
2(x+1)+h
2
)
s
i
n
h
2
]
2×(
h
2
)

lim
h0
c
o
s
(x+1+
h
2
)
(
sin
h
2
h
2
)

=
[
lim
h0
c
o
s
(x+1+
h
2
)
]
[
lim
h0
sin
h
2
h
2
]

= cos (x + 1) × (1) = cos (x + 1).
(iv) Let f (x) = cos (x
π
8
)

We have,
d
dx
(f (x)) =
lim
h0
cos(x+h
π
8
)
cos(x
π
8
)
h

=
lim
h0
[
2sin(
x+h
π
8
+x
π
8
2
)
s
i
n
(
s+h
π
8
+x
π
8
2
)
h
]

=
lim
h0
[
2sin(x
π
8
+
h
2
)
.sin(
h
2
)
h
]

=
[
lim
h0
s
i
n
(x
π
8
+
h
2
)
]
[
lim
h0
sin(
h
2
)
h
2
]

= - sin (x
π
8
)
(1)
© examsnet.com
Go to Question: