NCERT Class XI Mathematics - Sequences and Series - Solutions

© examsnet.com
Question : 101
Total: 106
Find the sum of the first n terms of the series: 3 + 7 + 13 + 21 + 31 + ...
Solution:  
Let Sn = 3 + 7 + 13 + 21 + 31 + ..... + an1+an ....(i)
or Sn = 3 + 7 + 13 + 21 + ...... + an – 2 + an1+an ....(ii)
On subtracting (ii) from (i), we get
0 = 3 + [4 + 6 + 8 + ..... (n – 1) terms] – an
an = 3 +
n1
2
[8 + (n - 2) . 2]
Since Sn =
n
2
[2a + (n - 1) d]
an = 3 + (n - 1) (n + 2)
an = 3 + n2 + n - 2 ⇒ an = n2 + n + 1
Hence Sn =
n
Σ
k=1
ak
=
n
Σ
k=1
(k2+k+1)
=
n
Σ
k=1
k2
+
n
Σ
k=1
k
+
n
Σ
k=1
1

=
n(n+1)(2n+1)
6
+
n(n+1)
2
+ n =
n
6
[(n + 1) (2n + 1) + 3 (n - 1) + 6]
=
n
6
[2n2 + n + 2n + 1 + 3n + 3 + 6] =
n
6
[2n2 + 6n + 10]
=
n
3
(n2 + 3n + 5)
© examsnet.com
Go to Question: