NCERT Class XI Mathematics - Sequences and Series - Solutions
© examsnet.com
Question : 101
Total: 106
Find the sum of the first n terms of the series: 3 + 7 + 13 + 21 + 31 + ...
Solution:
Let S n = 3 + 7 + 13 + 21 + 31 + ..... + a n – 1 + a n ....(i)
orS n = 3 + 7 + 13 + 21 + ...... + an – 2 + a n – 1 + a n ....(ii)
On subtracting (ii) from (i), we get
0 = 3 + [4 + 6 + 8 + ..... (n – 1) terms] –a n
⇒a n = 3 +
[8 + (n - 2) . 2]
SinceS n =
[2a + (n - 1) d]
⇒a n = 3 + (n - 1) (n + 2)
⇒a n = 3 + n 2 + n - 2 ⇒ a n = n 2 + n + 1
HenceS n =
a k =
( k 2 + k + 1 ) =
k 2 +
k +
1
=
+
+ n =
[(n + 1) (2n + 1) + 3 (n - 1) + 6]
=
[2 n 2 + n + 2n + 1 + 3n + 3 + 6] =
[2 n 2 + 6n + 10]
=
(n 2 + 3n + 5)
or
On subtracting (ii) from (i), we get
0 = 3 + [4 + 6 + 8 + ..... (n – 1) terms] –
⇒
Since
⇒
⇒
Hence
=
=
=
© examsnet.com
Go to Question: