Given that, initial angular velocity =ω0 and at any instant time t, angular velocity =ω So when displacement is x then the resultant acceleration f=(ω02−ω2)x So the external force, F=m(ω02−ω2)x....(1) But given that F∝cosωt
From (i) we get, m(ω02−ω2)x∝cosωt....(ii) From equation of SHM we know, x=Asin(ωt+φ) When t=0 then x=A ∴A=Asin(φ) ⇒A=
π
2
∴x=Asin(ωt+
π
2
)=Acosωt Putting value of x in (ii), we get m(ω02−ω2)Acosωt∝cosωt ⇒A∝