)=sin−1(x) The above equation can be rewritten as, sin−1(
3x
5
√1−
16x2
25
+
4x
5
√1−
9x2
25
)=sin−1x
3x
5
√1−
16x2
25
+
4x
5
√1−
9x2
25
=x Thus, x=0 Or
3√25−16x2
25
+
4√25−9x2
25
=1 9(25−16x2)+16(25−9x2)+24√25−16x2√25−9x2=625 24√25−16x2√25−9x2=288x2 (25−16x2)(25−9x2)=144x4 Solve further, 625−625x2=0 x=±1 The sum of the values of x is, Sum=0+1+−1 =0