Consider the given equations, 3x2−7x+2=0 ....(I) 15x2−11x+a=0....(II) Here, a1=3,b1=−7,c1=2 a2=15,b2=−11,c2=a If α be the common root, then it is given by, (2(15)−3a)2=(−7a+22)(−33+105) (30−3a2)=(22−7a)(72) [9(10−a)2]=(22−7a)8 100+a2−20a=176−56a a2+36a−76=0 a(a+38)−2(a+38)=0 a=2[∵a>0] So, the sum of the roots of the equation 15x2−ax+7=0 can becalculated as, Sum of roots =−