Given circle is x2+y2−6x−4y−12=0 Centre =(3,2) Radius =√(3)2+(2)2+12=√9+4+12=√25 r=5 Since, tangents are parallel to X-axis ∴ Let y=k be the tangent to the given circle ⇒y−k=0 touches the circle ∴ Perpendicular distance from C(3,2) to y−k=0= radius
|2−k|
√1
=5 |2−k|=5 2−k=±5 2−k=5 (or ) 2−k=−5 k=−3 (ог) k=7 ∴ Required equation of tangents are y=−3 and y=7 ⇒(y+3)=0 and (y−7)=0 ∴ Equation of pair of tangents is (y+3)(y−7)=0 y2−4y−21=0