=±5 So, x1=3±5‌cos‌θ And, y1=2±5‌sin‌θ Now, the points (x1,y1) lies on the line 3x−4y−1=0. 3(3±5‌cos‌θ)−4(2±5‌sin‌θ)−1=0 9±15‌cos‌θ−8+20‌sin‌θ−1=0 15‌cos‌θ−20‌sin‌θ=0 3‌cos‌θ=±4‌sin‌θ Solve further, tan‌θ=±
3
4
So, cos‌θ=±
4
5
sin‌θ=±
3
5
Hence, x1=3±(
4
5
5) =7,−1 And, y1=2±5(
3
5
) =5,−1 Therefore, the coordinates are (7,5) and (-1,-1)