sin2θ Since sin 2θ or sinθ or cosθ is not given, we can’t determine sinθ + cosθ. ∴ I alone is not sufficient II. Given : sin2θ=
1
2
⇒ 2θ = 30° or 150°[Sine is positive in QI and QII] ⇒ θ = 15° or 75° sin15°+cos15°=sin15°+sin75° Also, sin75°+cos75°=sin75°+sin15° Hence, sinθ+cosθ can be uniquely determined. ∴ II alone is sufficient. Aliter : sinθ+cosθ=√(sinθ+cosθ)2
=√(1+2sinθcosθ)=√1+sin2θ=√1+
1
2
√
3
2
we discard –
√3
2
as θ lies in the first quadrant. ∴ II alone is sufficient.