log62x2+log6y+3log63yz=6 ⇒++=6 ⇒2logx+logy+2log(yz)=6log62 ⇒logx2+logy+logyz2=log612 ⇒log(x2y⋅y⋅z2)=log612 ⇒(xyz)2=(66)2 ⇒xyz=66 Given x, y, z is in G.P Let x = a, y = ab, z =
ab2 ⇒xyz=a3b3=(ab)3 ⇒(ab)3=(62)3 Possible values of (a, b) satisfying the equation
(1,36) (2, 18) (3. 12). (4, 9). (9, 4), (12. 3). (18. 2). (36, 1)
Given, y - x is a perfect cube
=>ab - a is perfect cube
⇒a(b - 1) is perfect cube
Only possible when (a, b) =(9, 4)
∴ x = 9, y = 36, z= 144
∴ x + y + z = 9 + 36 + 144= 189