can be written as log42. Therefore, ‌⇒2log4(2x−9)=log42+log4(2x+‌
17
2
) ‌⇒log4(2x−9)2=log42(2x+‌
17
2
) ‌⇒(2x−9)2=2(2x+‌
17
2
) ‌⇒22x−18⋅2x+81=2⋅2x+17 ‌⇒22x−20⋅2x+64=0 ‌⇒22x−16⋅2x−4⋅2x+64=0 ‌⇒2x(2x−16)−4(2x−16)=0 ‌⇒(2x−4)(2x−16)=0 The values of 2∧xx can't be 4 (log will be undefined), which implies The value of 2x is 16. Therefore, the common difference is log4(2x−9t)−log42 ⇒log47−log42=log4(‌