=log102 ⇒y = 2| x|...(ii) From eq. (ii) we can conclude that y is always positive. Now, when x > 0 and y > 0 (always) | x + y| = 10 ⇒ | x + 2| x|| = 10 ⇒ x + 2| x| = 10 ( ∵ x > 0) ⇒ x + 2 x = 10 ⇒ x =
10
3
∵y=
20
3
Again, x < 0 and y > 0 (always positive) | − x + 2| − x|| = 10 ⇒ | − x + 2 x| = 10 ⇒ | x| = 10 ⇒ x = − 10 (∵ x < 0)∴ y= 20 Hence, x = − 10, y = 20 and x =