Hence, product of roots is not equal to the sum of roots, so Statement I not correct. Now, for roots to be real and uequal. ∴ Determinant, D>0 ⇒ b2−4ac>0 ⇒ b2−4a(b)>0 ⇒ b2−4ab>0 ⇒ b2>4ab ∴ b>4a So, if b>4a, then roots are unequal and real, so Statement II is not always true it will depend on values of a and b.