Concept: Let A be any square matrix. (adjAT)=|A|T(AT)−1 (adjA)T=(|A|A−1)T (adjAT)=(adjA)T Calculations: Given, A is a square matrix. Consider, (adjAT)−(adjA)T =|AT|(AT)−1−(|A|A−1)T =|A|T(AT)−1−(|A|T(A−1)T =|A|T(A−1)T−(|A|T(A−1)T = 0 = Null Matrix Hence, If A is a square matrix, then adjAT−(adjA)T equal to null matrix.