Since g(x) = logF(x), we get
g (x + 1) = log F (x + 1)
= log [xF (x)]
= log x + log F (x)
= log x + g (x)
g (x + 1) - g (x) = log x
Differentiating on both sides, we get
g' (x + 1) - g' (x) =
Differentiating again, we get
g" (x + 1) - g" (x) -
Substituting x = x -
, we get
g"
(x+)−g"(x−) =
− ⇒
g"(x+)−g"(x−) =
− Substituting x = 1, 2, 3, …, N, we get
g"(1+)−g"(1−) =
g"(2+)−g"(2−) =
g"(3+)−g"(3−) =
g"(N+)−g"(N−) =
Hence, we get
g"(N+)−g"() =
−4[+++...+]