(‌19C0(X3)19+‌19C1(px2+2x−5)(x3)18+...) (‌8C0x16+‌8C1(qx−41)x14+...)(‌6C0x24+‌6C1(−x3+x−1)x20+.....) =x97+391x96+a95x95+... Comparing the coefficient of x96 we get 19p+8q−6=391 ⇒19p+8q=397 Let q=19λ+k,0≤k<19 p=‌
397−8(19λ+k)
19
=21−8λ−2‌
(4k+1)
19
‌
4k+1
19
must be integer ⇒k=14,p=15−8λ For minimum positive value of p,λ=1⇒p=7