Let P(x1,y1)&Q(x2,y2) ∴ Roots of 2x2−rx+p=0 are x1,x2 and roots of x2−sx−q=0 are y1,y2 ∴ Equation of circle ≡(x−x1)(x−x2)+(y−y1)(y−y2)=0 ⇒x2−(x1+x2)x+x1x2+y2−(y1+y2)y+y1y2=0 ⇒x2−
r
2
x+
p
2
+y2+sy−q=0 ⇒2x2+2y2−rx+2sy+p−2q=0 Compare with 2x2+2y2−11x−14y−22=0 We get r=11,s=7,p−2q=−22 ⇒2r+s+p−2q=22+7−22=7