⇒ G = [M−1L3T−2] E = hv ⇒ h = [ML2T−1] C = [LT−1] t α GxhyCz [T] = [M−1L3T−2]x[ML2T−1]y[LT−1]z [M0L0T1] = [M−x+
y
L3x+2y +
z
T−2x−2x−y−z] on comparing the powers of M, L, T – x + y = 0 ⇒ x = y 3x + 2y + z = 0 ⇒ 5x + z = 0 ....(i) –2x – y – z = 1 ⇒ 3x + z = –1 ...(ii) on solving (i) & (ii) x = y =