Let √x=a ∴ given equation will become: |a−2|+a(a−4)+2=0 ⇒|a−2|+a2−4a+4−2=0 ⇒|a−2|+(a−2)2−2=0 Let |a−2|=y( Clearly y≥0) ⇒y+y2−2=0 ⇒y=1 or -2 (rejected) ⇒|a−2|=1⇒a=1,3 When √x=1⇒x=1 When √x=3⇒x=9 Hence, the required sum of solutions of the equation =10