Let intersection points be P(x1,y1) and Q(x2,y2) The given equations x2=4y . . . .(i) x−√2y+4√2=0 . . . .(ii) Use eqn (i) in eqn (ii) x−√2
x2
4
+4√2=0 √2x2−4x−16√2=0 x1+x2=2√2,x1x2=−16,(x1−x2)2=8+64=72 Since, points P and Q both satisfy the equations (ii), then x1−√2y1+4√2=0 x1−√2y2+4√2=0 (x2−x1)=√2(y2−y1)⇒(x2−x1)2=2(y2−y1)2 ⇒PQ=√(x2−x1)2+(y2−y1)2 =√(x2−x1)2+