Let t∝GxhyCz Dimensions of G=[M−1~L3T−2] h=[ML2T−1] and C=[LT−1] [T]=[M−1L3T−2]x[ML2T−1]y[LT−1]z [M0L0T1]=[M−x+yL3x+2y+zT−2x−y−z] By comparing the powers of M,L,T both the sides −x+y=0⇒x=y 3x+2y+z=0⇒5x+z=0 ......(i) −2x−y−z=1⇒3x+z=−1 .....(ii) Solving eqns. (i) and (ii), x=y=