m1v12 Mu2+0=Mv12+mv2 ⇒M(u2−v12)=mv22 ⇒M(u−v1)(u+v1)∕m=v22 Substituting the value of M
(u−v1)
m
from Eq. (i) in Eq. (ii), we get v2(u+v1)=v22 u+v1=v2 ⇒M≫m v1=u v2=2u Eq. (ii), we get v2(u+v1)=v22 u+v1=v2 M>>m v1=u v2=2u Hence, option (c) is the correct.