Given equation is x|x|−5x−6=0.....(i) Case I When x>0; then equation is x2−5x−6=0 ⇒(x−6)(x+1)=0 ∴x=−1 or 6 But x>0⇒x≠−1∴x=6 Case II When x<0, then equation is −x2−5x−6=0 ⇒x2+5x+6=0 ⇒(x+2)(x+3)=0 ⇒x=−2 or -3 So, the required roots are −3,−2,1,6. ∴ Product of the roots =(−3)(−2)(1)(6)=36