b2(a2+c2−b2)=c2(a2+b2−c2) a2b2−b4−a2c2+c4=0 a2(b2−c2)−(b4−c4)=0 (b2−c2)(a2−b2−c2)=0 Either b2+c2−a2=0 or (b2−c2)=0 When, b2+c2−a2=0 b2+c2=a2 Hence, ΔABC is a right angle triangle. And when, b2−c2=0⇒b=c Hence, ΔABC is an isosceles triangle. From question ΔABC is not right angle triangle. Hence, ΔABC must be an isosceles triangle.