Remember: The sum of the squares of the sides of a parallelogram is equal to the sum of the squares of its diagonals In parallelogram ABCD,
AB2+BC2+CD2+DA2=AC2+BD2 ⇒AB2+BC2+AB2++BC2=AC2+BD2
(AB = CD and BC= DA) ⇒2(AB2+BC2)=AC2+BD2 Hence, statement 1 is incorrect. If ABCD is a rhombus, then AB = BC = CD = DA ∴AC2+BD2=4AB2=4×(4)2 =64cm2=43cm2 ⇒n=4 Hence, statement 2 is correct.